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Ferroelectric materials are considered to be the most competitive energy storage materials for applications in pulsed power elec-
tronics due to excellent charge–discharge properties. However, the low energy storage density is the primary problem limiting 
their practical application. In this study, (1−x)Na0.5Bi0.5TiO3–xSr0.7La0.2TiO3 [(1−x)NBT–xSLT] ferroelectric ceramics are found 
to exhibit excellent energy storage performances through a synergistic strategy. As the SLT concentration increases, the relaxation 
characteristic increases significantly and the breakdown strength increases dramatically from 150 kV/cm to 220 kV/cm. The 
recoverable energy storage density of the 0.55NBT–0.45SLT ceramic is 2.86 J/cm3 with an energy storage efficiency of 88% 
under an electric field of 220 kV/cm. Furthermore, the ceramic with x = 0.45 mol exhibited excellent energy storage stability in 
the ranges of 20–180°C (temperature) and 1–125 Hz (frequency). These excellent properties demonstrate the potential of (1−x)
NBT–xSLT ceramics when used as dielectric capacitors in pulsed power systems.
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1.  Introduction

With the growing requirement for energy storage devices for 
pulsed power systems, ceramic-based dielectric materials are 
becoming a focus of interest due to their high power den-
sity and excellent stability.1–11 Basically, total energy storage 
(Wtot), recoverable energy storage (Wrec) and energy storage 
efficiency (η) of dielectric ceramic material can be assessed 
by the following equations11–13:
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where E, Pmax and Pr are the applied electric field, maxi-
mum polarization and remnant polarization, respectively. 

Therefore, to obtain excellent energy storage performance, 
large Pmax, low Pr and high breakdown strength (BDS) need 
to be satisfied.15–17

Currently, four types of dielectric ceramics are widely 
used for energy storage applications, namely linear dielectrics 
(LDs), ferroelectrics (FEs), relaxed ferroelectrics (RFEs) and 
antiferroelectrics (AFEs).18–21 Compared to LDs with low 
Pmax and FEs with high Pr,22,23 AFEs with double hystere-
sis loops and RFEs with slender polarization–electric field 
(P–E) hysteresis loops are considered to be promising mate-
rials for energy storage.15,24 However, RFEs are considered 
to be the most desirable ceramic dielectric capacitor material 
at present due to their environmental advantages. Due to the 
generation of random electric field (RFS), which disrupts the 
long-range ordered structure of the relaxation material, polar 
nanoregions (PNRs) are formed and thus excellent energy 
storage properties are achieved.25

Among the relaxation ferroelectric ceramics, 
Na0.5Bi0.5TiO3 (NBT)-based ceramic is considered to be the 
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most competitive lead-free energy storage material by vir-
tue of its excellent Pmax (>40 μC/cm2). However, the small 
BDS and large Pr of pure NBT-based ceramic materials lead 
to low Wrec.15 Therefore, researchers have tried to improve 
the energy storage behavior of NBT-relaxed ferroelec-
tric ceramics through component optimization.12,14,26 Qiao 
et al. introduced Sr0.7Sm0.2TiO3 (SST) in NBT ceramics for 
replacing Bi3+ and Na+ to avoid oxygen vacancies and to 
inhibit grain growth. The energy storage properties of (1 − x)
Bi0.5Na0.5TiO3–xSr0.7Sm0.2TiO3 [(1  −  x)NBT  –  xSST] RFE 
ceramics were increased via reducing the tolerance factor (t) 
to increase the relaxation ferroelectric phase and decreasing 
the grain size to exhibit large BDS of 283 kV/cm.27 Lin et al. 
prepared (1  −  x)(Na0.5Bi0.5)0.7Sr0.3TiO3  –  xBi(Mg2/3Nb1/3)- 
O3 [(1  −  x)NBT–xBMN] RFE ceramics. Sr2+ ions were 
introduced into the NBT ceramics to disrupt the long-range 
ordering of the ferroelectrics and attract PNRs generation, 
while BMN was introduced to suppress Pr.23 This achieves 
a synergistic increase in energy storage density and η. The 
above studies demonstrate that combining fine grain and high 
densities is important for enhancing the BDS and relaxation 
behavior of NBT-based RFEs, thus further improving their 
performance in practical applications.18,28,29

In this study, exceptional energy storage density and 
efficiency were achieved in (1  −  x)Na0.5Bi0.5TiO3  –  xSr0.7- 
La0.2TiO3 [(1 − x)NBT – xSLT] ceramics. SLT has a signifi-
cant effect on the reduction of the grain size, which leads to 
enhanced BDS and relaxation behavior. Moreover, (1 − x)- 
NBT – xSLT ceramics are fabricated by tape-casting method, 
which improves the microstructure and densification of the 
ceramics. This preparation method effectively increases the 
BDS of the ceramics and contributes to the desired energy 
storage performance.30,31 Further, the results show that excel-
lent energy storage properties are achieved at high electric 
fields. The potential of NBT-based ceramics when used as 
dielectric capacitors in pulsed power systems is confirmed by 
these excellent properties.

2.  Experimental Details

The (1  −  x)NBT  –  xSLT (x  =  0.2, 0.3, 0.4 and 0.5) RFE 
ceramics were obtained via tape-casting technique and con-
ventional solid-state sintering method. The weighed drugs 
were placed in ethanol and ball milled for 24 h to obtain 
the original powder. The virgin powder was dried and cal-
cined at 850°C for 4 h. The calcined powder was subjected 
to secondary ball milling. Subsequently, ethanol, tributyl 
phosphate, polyvinyl butyral (PVB) binder and plasticizer 
(polyethylene glycol, phthalate) were added to the ceramic 
powder and then the mixture was ball milled for 18 h to 
obtain the cast slurry. Air bubbles were removed from the 
cast slurry by a vacuum defoamer (TP-08, Beijing Oriental 
Sun Technology Co., Ltd., China). The slurry was cast onto 
the film strip substrate by a cast machine (LY-150, Beijing 
Orient Suntech Co., Ltd., China). The obtained thick films 

were stacked together (DY-30, Tianjin Technology Co., Ltd., 
China) and further densified green samples were obtained by 
cold isostatic pressing technique (U150, Shanxi Jinkaiyuan 
Co., Ltd.) under high pressure. The samples were calcined at 
500°C to burn out the binder and then sintered in a crucible 
at 1170°C for 3 h. To avoid the volatilization of Na+ and Bi3+ 
during high-temperature sintering, the samples were encap-
sulated in calcined powder of the same composition. Finally, 
the ceramic samples were polished to 100 μm and sputtered 
with an electrode area of 3.14 mm2, followed by electrical 
properties testing.

The phase structures of (1 − x)NBT – xSLT ceramics were 
analyzed by an X-ray diffractometer (Bruker D8 Advanced 
Diffractometer, Germany). The surface morphology of the 
ceramics was observed by scanning electron microscopy 
(FE-SEM; ZEISS Supra 55, Germany). Temperature depen-
dence of the dielectric constant (εr) and dielectric loss (tanδ) 
was detected via a computer-controlled LCR meter (TH2828, 
Tonghui, China). The P–E hysteresis loops at the frequency of 
10 Hz were measured by a ferroelectric test system (Radiant 
Technologies, Inc., Albuquerque, USA).

3.  Results and Discussion

The room-temperature X-ray diffraction (XRD) patterns of 
the (1  −  x)NBT  –  xSLT ceramics in Fig. 1(a) demonstrate 
that all ceramics exhibit a pure perovskite structure, and no 
second phase was observed. The enlarged view of the (200) 
diffraction peak is shown in Fig. 1(b). No splitting of the 
(200) diffraction peak was observed for all ceramics, which 
indicates that the ceramics have a typical pseudo-cubic struc-
ture. Additionally, the (200) peak shifts to the lower angle as 
the SLT content increases, which indicates the expansion of 
the lattice constant.18,31

Figure 2 shows the SEM images and grain size distribu-
tion of (1 − x)NBT – xSLT ceramics. It can be observed that 
all ceramics have a dense structure and no obvious defects are 
produced. In addition, the average grain sizes of the differ-
ent components of the ceramics are 2.54, 2.43 and 2.29 μm, 

(a) (b)

Fig. 1. (a) X-ray diffraction patterns of (1 − x)NBT – xSLT ceram-
ics in the range of 20–80°. (b) The magnified spectra at (200) peak.
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respectively, as can be seen in the grain size plot at the bottom 
of Fig. 2. This means that SLT doping can reduce the grain 
size of the ceramics and the defects, thus increasing the BDS.

As can be seen from Figs. 3(a)–3(c), the εr of all ceram-
ics shows a tendency to increase and then decrease with 
increasing temperature, producing a peak in εr. This indi-
cates that at this temperature, the ceramics changed from 
the ferroelectric phase to the paraelectric phase. As the SLT 
content increases, the εr of the ceramics gradually decreases. 
A reduced εr is beneficial to the increase in energy storage 
performance, which is due to the decrease in εr caused by 
increased relaxation. As the SLT content increases, local lat-
tice deformation and disruption of ferroelectric long-range 
ordering produce RFS. RFS leads to a gradual increase in 
dynamic PNRs and hence enhanced relaxation behavior.3,32,33 
The εr and tanδ gradually move toward higher temperatures 
as the test frequency increases, producing frequency disper-
sion, which is a manifestation of ceramic relaxation proper-
ties.33,34 Figure 3(d) shows the frequency dependence of the 
(1−x)NBT–xSLT ceramics. As the SLT content increases, εr 
gradually decreases. This is also an indication of progressive 
strengthening of the relaxation properties of the ceramics due 
to the increasing SLT content. The overall decrease in εr with 
increasing frequency implies that frequency affects the sta-
bility of the ceramics. Of the three components, the 0.45SLT 
component has the best overall stability.

The Weibull distribution of the ceramic dielectric BDS is 
shown in Fig. 4(a). The Weibull distribution can be calculated 
by the equation35

 X Ei i= ( )ln ,  (4)

where Ei represent the values of specimens of test ceram-
ics. The results for the Weibull distribution of (1−x)NBT–
xSLT ceramics are shown in Fig. 4(a). The graph shows a 
good fit of the data points, and all shape parameters (β) are 
higher than 50 for each composition. Good agreement with 
the Weibull distribution was found for all test ceramics in 
the decomposition data. It can be seen that the BDS of the 
ceramics increases gradually with the increase of SLT con-
tent, which is due to the reduction of grain size, which makes 
the ceramics dense, and these factors make the BDS to have 
a great improvement.36 Figure 4(b) shows the P–E loops of 
the ceramics at the same NBT/SLT ratio. With the increase 
of SLT, Pmax decreases, and the ceramics retain the slender 
shape in general, which is one of the manifestations of the 
relaxation property. As shown in Fig. 4(c), Wrec of (1−x)NBT–
xSLT ceramics increases significantly from 1.81 J/cm3 to 
2.52 J/cm3 when the SLT content increases from 0.35 to 0.45. 
In particular, the 0.55NBT–0.45SLT ceramic has the highest 
Wtot (2.83 J/cm3) and Wrec (2.52 J/cm3), and maintained a high 
η (88%). To further elucidate the energy storage performance 
of the 0.55NBT–0.45SLT ceramic, the P–E loops under the 

Fig. 2. (a)–(c) SEM images and grain size distribution of (1 − x)NBT – xSLT ceramics (x = 0.35, 0.4 and 0.45). (d) The average grain size 
of (1 − x)NBT – xSLT ceramics.
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(a) (b)

(c) (d)

Fig. 3. Dielectric constants and dielectric losses of (1 − x)NBT – xSLT ceramics (x = 0.35, 0.4 and 0.45): (a)–(c) temperature dependence 
and (d) frequency dependence.

(a) (b) (c)

(d) (e) (f)

Fig. 4. (a) Weibull distribution function of BDS; (b) P–E loops of (1−x)NBT–xSLT ceramics (x=0.35, 0.4 and 0.45); (c) Wtot, Wrec and η 
variations with respect to x content; (d) P–E loops of 0.55NBT–0.45SLT ceramic under varying electric field; (e) Pmax of 0.55NBT–0.45SLT 
ceramic under different applied electric fields; and (f) Wtot, Wrec and η as a function of electric field for 0.55NBT–0.45SLT ceramic.
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varying electric field at room temperature (RT) are shown in 
Figs. 4(d) and 4(e). Both the polarization and energy stor-
age of the ceramics increase gradually with the increase of 
electric field. The performance of the ceramic is stable under 
the electric field without polarization or with the sudden 
change of electric field, which indicates that the ceramic has 
good stability under low electric field. The rate of increase of 
Pmax decreases as the electric field increases from 60 kV/cm  
to 220 kV/cm. This indicates that as the test electric field 
increases and gradually approaches the BDS of the ceramic, 
the polarization of the ceramic also gradually approaches the 
optimal saturation state. The enhanced Pmax and BDS are 
favorable to achieve large Wrec in 0.55NBT  –  0.45SLT 
ceramic. The Wtot, Wrec and η of 0.55NBT – 0.45SLT ceramic 
under different applied electric fields are shown in Fig. 4(f), 
respectively. It can be observed that Wtot and Wrec increase 
from 0.28 J/cm3 and 0.25 J/cm3 to 2.86 J/cm3 and 2.52 J/cm3,  
respectively. η decreases slightly from 90% to 88% with 
increasing BDS due to enhanced conductivity.

Figure 5 shows the P–E curves and energy storage per-
formances of the 0.55NBT–0.45SLT ceramic at different 
test temperatures and frequencies. The Wrec of the ceramic 
decreases from 2.03 J/cm3 to 1.72 J/cm3 in the tempera-
ture range of 25–125°C under 200-kV/cm electric field  
and there is a recoverable energy storage density from 1.98 
J/cm3 to 1.90 J/cm3 in the frequency range of 20–140 Hz. 

The  slight but insignificant decrease in efficiency in both 
ranges also shows the high stability of the ceramic.

4.  Conclusions

In a nutshell, (1  −  x)NBT  –  xSLT lead-free ceramics were 
prepared by the flow-delay method and the energy storage 
properties were investigated. A pure perovskite structure and 
a dense structure were exhibited by the (1 − x)NBT – xSLT 
ceramics. A key role in the reduction of grain size and domain 
size can be attributed to SLT, which leads to enhanced BDS 
and relaxation properties. A maximum Wrec of 2.86 J/cm3 and 
a high η of 88% are obtained for the 0.55NBT  –  0.45SLT 
ceramic. Besides, the 0.55NBT – 0.45SLT ceramic exhibited 
good temperature and frequency stability. These excellent 
properties demonstrate the promising potential of the studied 
dielectric capacitor ceramics for the development of pulsed 
power systems.
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